Received 13 July 2006

Accepted 15 July 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jin-Chang Ding,^a Rong Xu,^b Hua-Yue Wu,^b Hong-Ping Xiao^b and Xiao-Bo Huang^b*

^aWenzhou Vocational & Technical College, Zhejiang Wenzhou 325035, People's Republic of China, and ^bSchool of Chemistry and Materials Science, Wenzhou University, Zhejiang Wenzhou 325027, People's Republic of China

Correspondence e-mail: xiaobhuang@hotmail.com

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.004 Å R factor = 0.044 wR factor = 0.114 Data-to-parameter ratio = 13.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. In the title compound, $C_{11}H_{14}N_4OS \cdot H_2O$, the dihedral angle between the ethoxybenzene group and the triazole ring is 48.20 (8)°. Intermolecular N-H···O and O-H···N hydrogen bonds involving the water molecules form a chain along the *a* axis.

3-(2-Ethoxyphenyl)-5-methylsulfanyl-4H-

1,2,4-triazol-4-amine monohydrate

Comment

1,2,4-Triazoles are good intermediates in the synthesis of some fused heterocycles which exhibit various biological properties, including antimicrobial (Feng *et al.*, 1992), antibacterial, antifungal (Hui *et al.*, 2002), anti-inflammatory (Prasad *et al.*, 1989) and diuretic (Mohan & Anjaneyulu, 1987) activities.

In the molecule of the title compound, (I) (Fig. 1), the ethoxybenzene fragment (C1–C6/C10/C11/O1) is essentially planar with a maximum deviation of 0.020 (2) Å for atom O1. The dihedral angle between the ethoxybenzene group and the triazole ring is 48.20 (8)°. The C–N bond lengths, in the range 1.304 (3)–1.368 (3) Å, are longer than a typical C=N double bond [*ca* 1.269 (2) Å; Xiang *et al.*, 2004] but shorter than a C–N single bond [*ca* 1.443 (4) Å; Jin *et al.*, 2004], indicating electron delocalization in the triazole ring (Table 1).

An intramolcular $N-H\cdots O$ hydrogen bond is observed in the main molecule. The crystal packing in (I) (Fig. 2) is stabilized by intermolecular $N-H\cdots O$ and $O-H\cdots N$ hydrogen bonds (Table 2) involving the water molecules. The hydrogen bonds link the molecules into chains along the *a* axis.

Experimental

Methyl iodide (7.5 mol) and sodium hydroxide (7.0 mol) in dichloromethane (30 ml) were added to 4-amino-5-(2-ethoxyphenyl)-2,4-dihydro[1,2,4]triazole-3-thione (5 mol) at room temperature. The reaction mixture was stirred for 4 h and the white solid obtained was filtered off and recrystallized from a mixture of acetone and petro-leum ether (1:2) (yield 68%, m.p. 346–347 K). Single crystals of (I) suitable for X-ray data collection were obtained by slow evaporation of an ethanol solution.

© 2006 International Union of Crystallography All rights reserved

organic papers

Crystal data

 $\begin{array}{l} C_{11}H_{14}N_4 \text{OS} \cdot H_2 \text{O} \\ M_r = 268.34 \\ \text{Triclinic, } P\overline{1} \\ a = 7.5828 \ (13) \ \text{\AA} \\ b = 8.9824 \ (15) \ \text{\AA} \\ c = 11.5308 \ (19) \ \text{\AA} \\ \alpha = 109.542 \ (3)^{\circ} \\ \beta = 98.836 \ (3)^{\circ} \\ \gamma = 107.754 \ (3)^{\circ} \end{array}$

Data collection

Bruker APEX area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{\rm min} = 0.934, T_{\rm max} = 0.960$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.114$ S = 1.042350 reflections 179 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected bond lengths (Å).

1.738 (2)	N2-C8	1.304 (3)
1.787 (3)	N3-C8	1.355 (2)
1.304 (3)	N3-C7	1.368 (3)
1.393 (2)	N3-N4	1.408 (2)
	1.738 (2) 1.787 (3) 1.304 (3) 1.393 (2)	1.738 (2) N2-C8 1.787 (3) N3-C8 1.304 (3) N3-C7 1.393 (2) N3-N4

V = 675.7 (2) Å³

 $D_x = 1.319 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

Block colourless

 $0.29 \times 0.17 \times 0.15~\mathrm{mm}$

3570 measured reflections

2350 independent reflections 2036 reflections with $I > 2\sigma(I)$

 $w = 1/[\sigma^2(F_0^2) + (0.0558P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

+ 0.2204P]

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$

 $\mu = 0.24 \text{ mm}^{-1}$

T = 298 (2) K

 $\begin{array}{l} R_{\rm int}=0.014\\ \theta_{\rm max}=25.0^\circ\end{array}$

Z = 2

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N4-H4 B ···O2 ⁱ	0.876 (17)	2.129 (18)	3.004 (3)	177 (2)
$N4-H4A\cdots O1$	0.861 (16)	2.16 (2)	2.886 (3)	141 (2)
$O2-H2B\cdots N2^{ii}$	0.852 (16)	2.065 (16)	2.894 (2)	164 (3)
$O2-H2A\cdots N1$	0.846 (16)	2.045 (16)	2.887 (2)	173 (3)
	1 (**)			

Symmetry codes: (i) x - 1, y, z; (ii) -x + 2, -y + 1, -z + 2.

H atoms bonded to N and O atoms were located in a difference map and were refined using the N-H and O-H distance restraints of 0.86 (2) and 0.85 (2) Å, respectively. The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of Csp^2 -H = 0.93 Å with $U_{iso}(H) = 1.2U_{eq}(C)$, C(methylene)-H = 0.97 Å with $U_{iso}(H) = 1.2U_{eq}(C)$ and C(methyl)-H = 0.96 Å with $U_{iso}(H) = 1.5U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2002); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge financial support by the Scientific Research Fund of Zhejiang Provincial Education Department (grant No. 20051292), the Zhejiang Provincial Natural Science

Figure 1

The asymmetric unit of (I), with the atom numbering, showing displacement ellipsoids at the 50% probability level. Hydrogen bonds are indicated by dashed lines.

Figure 2

Part of the crystal structure of (I), showing a hydrogen-bonded (dashed lines) chain running along the a axis.

Foundation of China (grant No. Y405113) and Wenzhou University (grant No. 2005L009).

References

- Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Feng, X. M., Chen, R. & Yang, W. D. (1992). Chem. J. Chin. Univ. 13, 187–194.Hui, X. P., Zhang, L. M. & Zhang, Z. Y. (2002). J. Chin. Chem. Soc. 47, 535– 541.
- Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, 0642–0643
- Mohan, J. & Anjanevulu, G. S. R. (1987). Pol. J. Chem. 61, 547-551.
- Prasad, A. P., Ramalingam, T. & Rao, A. B. (1989). J. Med. Chem. 24, 199–214.Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Xiang, G.-Q., Zhang, L.-X., Zhang, A.-J., Cai, X.-Q. & Hu, M.-L. (2004). Acta Cryst. E60, 02249–02251.