Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-(2-Ethoxyphenyl)-5-methylsulfanyl-4H-1,2,4-triazol-4-amine monohydrate

Jin-Chang Ding, ${ }^{\text {a }}$ Rong $\mathrm{Xu},{ }^{\text {b }}$ Hua-Yue Wu, ${ }^{\text {b }}$ Hong-Ping Xiao ${ }^{\text {b }}$ and Xiao-Bo Huang ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Wenzhou Vocational \& Technical College, Zhejiang Wenzhou 325035, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Chemistry and
Materials Science, Wenzhou University,
Zhejiang Wenzhou 325027, People's Republic of China

Correspondence e-mail: xiaobhuang@hotmail.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.044$
$w R$ factor $=0.114$
Data-to-parameter ratio $=13.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title compound, $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{OS} \cdot \mathrm{H}_{2} \mathrm{O}$, the dihedral angle between the ethoxybenzene group and the triazole ring is 48.20 (8) ${ }^{\circ}$. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds involving the water molecules form a chain along the a axis.

Comment

1,2,4-Triazoles are good intermediates in the synthesis of some fused heterocycles which exhibit various biological properties, including antimicrobial (Feng et al., 1992), antibacterial, antifungal (Hui et al., 2002), anti-inflammatory (Prasad et al., 1989) and diuretic (Mohan \& Anjaneyulu, 1987) activities.

In the molecule of the title compound, (I) (Fig. 1), the ethoxybenzene fragment ($\mathrm{C} 1-\mathrm{C} 6 / \mathrm{C} 10 / \mathrm{C} 11 / \mathrm{O} 1$) is essentially planar with a maximum deviation of 0.020 (2) \AA for atom O1. The dihedral angle between the ethoxybenzene group and the triazole ring is $48.20(8)^{\circ}$. The $\mathrm{C}-\mathrm{N}$ bond lengths, in the range 1.304 (3) -1.368 (3) \AA, are longer than a typical $\mathrm{C}=\mathrm{N}$ double bond [ca 1.269 (2) Å; Xiang et al., 2004] but shorter than a CN single bond [ca 1.443 (4) \AA; Jin et al., 2004], indicating electron delocalization in the triazole ring (Table 1).

(I)

An intramolcular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is observed in the main molecule. The crystal packing in (I) (Fig. 2) is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2) involving the water molecules. The hydrogen bonds link the molecules into chains along the a axis.

Experimental

Methyl iodide (7.5 mol) and sodium hydroxide (7.0 mol) in dichloromethane (30 ml) were added to 4-amino-5-(2-ethoxyphenyl)2,4 -dihydro $[1,2,4]$ triazole-3-thione (5 mol) at room temperature. The reaction mixture was stirred for 4 h and the white solid obtained was filtered off and recrystallized from a mixture of acetone and petroleum ether (1:2) (yield 68%, m.p. 346-347 K). Single crystals of (I) suitable for X-ray data collection were obtained by slow evaporation of an ethanol solution.

Received 13 July 2006
Accepted 15 July 2006

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{OS} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=268.34$
Triclinic, $P \overline{1}$
$a=7.5828$ (13) \AA
$b=8.9824$ (15) A
$c=11.5308$ (19) \AA
$\alpha=109.542(3)^{\circ}$
$\beta=98.836(3)^{\circ}$
$\gamma=107.754(3)^{\circ}$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.934, T_{\text {max }}=0.960$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.114$
$S=1.04$
2350 reflections
179 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected bond lengths (\AA).

S1-C8	$1.738(2)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.304(3)$
S1-C9	$1.787(3)$	$\mathrm{N} 3-\mathrm{C} 8$	$1.355(2)$
N1-C7	$1.304(3)$	$\mathrm{N} 3-\mathrm{C} 7$	$1.368(3)$
N1-N2	$1.393(2)$	$\mathrm{N} 3-\mathrm{N} 4$	$1.408(2)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N4-H4B $\cdots \mathrm{O} 2^{\mathrm{i}}$	$0.876(17)$	$2.129(18)$	$3.004(3)$	$177(2)$
N4-H4A \cdots O1	$0.861(16)$	$2.16(2)$	$2.886(3)$	$141(2)$
O2-H2B $\cdots \mathrm{N} 2^{\mathrm{ii}}$	$0.852(16)$	$2.065(16)$	$2.894(2)$	$164(3)$
O2-H2A $\cdots \mathrm{N} 1$	$0.846(16)$	$2.045(16)$	$2.887(2)$	$173(3)$

Symmetry codes: (i) $x-1, y, z$; (ii) $-x+2,-y+1,-z+2$.
H atoms bonded to N and O atoms were located in a difference map and were refined using the $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ distance restraints of 0.86 (2) and 0.85 (2) \AA, respectively. The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of $\mathrm{Csp} p^{2}-\mathrm{H}=0.93 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, $\mathrm{C}($ methylene $)-\mathrm{H}=0.97 \AA$ with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ and $\mathrm{C}($ methyl $)-\mathrm{H}=0.96 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

The authors acknowledge financial support by the Scientific Research Fund of Zhejiang Provincial Education Department (grant No. 20051292), the Zhejiang Provincial Natural Science

Figure 1
The asymmetric unit of (I), with the atom numbering, showing displacement ellipsoids at the 50% probability level. Hydrogen bonds are indicated by dashed lines.

Figure 2
Part of the crystal structure of (I), showing a hydrogen-bonded (dashed lines) chain running along the a axis.

Foundation of China (grant No. Y405113) and Wenzhou University (grant No. 2005L009).

References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Feng, X. M., Chen, R. \& Yang, W. D. (1992). Chem. J. Chin. Univ. 13, 187-194.
Hui, X. P., Zhang, L. M. \& Zhang, Z. Y. (2002). J. Chin. Chem. Soc. 47, 535541.

Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. \& Shen, L. (2004). Acta Cryst. C60, o642-o643.
Mohan, J. \& Anjaneyulu, G. S. R. (1987). Pol. J. Chem. 61, 547-551.
Prasad, A. P., Ramalingam, T. \& Rao, A. B. (1989). J. Med. Chem. 24, 199-214. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Xiang, G.-Q., Zhang, L.-X., Zhang, A.-J., Cai, X.-Q. \& Hu, M.-L. (2004). Acta Cryst. E60, o2249-o2251.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

